654 research outputs found

    Global Thresholding and Multiple Pass Parsing

    Full text link
    We present a variation on classic beam thresholding techniques that is up to an order of magnitude faster than the traditional method, at the same performance level. We also present a new thresholding technique, global thresholding, which, combined with the new beam thresholding, gives an additional factor of two improvement, and a novel technique, multiple pass parsing, that can be combined with the others to yield yet another 50% improvement. We use a new search algorithm to simultaneously optimize the thresholding parameters of the various algorithms.Comment: Fixed latex errors; fixed minor errors in published versio

    Efficient Algorithms for Parsing the DOP Model

    Full text link
    Excellent results have been reported for Data-Oriented Parsing (DOP) of natural language texts (Bod, 1993). Unfortunately, existing algorithms are both computationally intensive and difficult to implement. Previous algorithms are expensive due to two factors: the exponential number of rules that must be generated and the use of a Monte Carlo parsing algorithm. In this paper we solve the first problem by a novel reduction of the DOP model to a small, equivalent probabilistic context-free grammar. We solve the second problem by a novel deterministic parsing strategy that maximizes the expected number of correct constituents, rather than the probability of a correct parse tree. Using the optimizations, experiments yield a 97% crossing brackets rate and 88% zero crossing brackets rate. This differs significantly from the results reported by Bod, and is comparable to results from a duplication of Pereira and Schabes's (1992) experiment on the same data. We show that Bod's results are at least partially due to an extremely fortuitous choice of test data, and partially due to using cleaner data than other researchers.Comment: 10 page

    Parsing Inside-Out

    Full text link
    The inside-outside probabilities are typically used for reestimating Probabilistic Context Free Grammars (PCFGs), just as the forward-backward probabilities are typically used for reestimating HMMs. I show several novel uses, including improving parser accuracy by matching parsing algorithms to evaluation criteria; speeding up DOP parsing by 500 times; and 30 times faster PCFG thresholding at a given accuracy level. I also give an elegant, state-of-the-art grammar formalism, which can be used to compute inside-outside probabilities; and a parser description formalism, which makes it easy to derive inside-outside formulas and many others.Comment: Ph.D. Thesis, 257 pages, 40 postscript figure
    • …
    corecore